
SAT-Based (Parametric) Reachability
for a Class of Distributed Time Petri Nets ⋆

Wojciech Penczek1,2, Agata Półrola3, and Andrzej Zbrzezny4

1 Polish Academy of Sciences, ICS, Ordona 21, 01-237 Warsaw, Poland
2 University of Podlasie, ICS, Sienkiewicza 51, 08-110 Siedlce, Poland

penczek@ipipan.waw.pl
3 University of Łódź, FMCS, Banacha 22, 90-238 Łódź, Poland

polrola@math.uni.lodz.pl
4 Jan Długosz University, IMCS, Armii Krajowej 13/15, 42-200 Czȩstochowa, Poland

a.zbrzezny@ajd.czest.pl

Abstract. Formal methods - among them the model checking techniques - play
an important role in the design and production of both systems and software. In
this paper we deal with an adaptation of the bounded model checking methods
for timed systems, developed for timed automata, to the case of time Petri nets.
We consider distributed time Petri nets and parametric reachability checking, but
the approach can be easily adapted to verification of other kinds of properties
for which the bounded model checking methods exist. A theoretical description
is supported by some experimental results, generated using an extension of the
model checker VerICS.

1 Introduction

The process of design and production of both systems and software – among others,
the concurrent ones – involves testing whether the product conforms its specification.
To this aim, various kinds of formal methods can be applied. One of the possible ap-
proaches, widely used and intensively developed, are model checking techniques.

In order to perform a formal verification, the system to be tested is usually modelled
using a theoretical formalism, e.g., a version of automata, Petri nets, state diagrams
etc. Obviously, the kind of the formalism depends on the features of the system to be
described. One of the approaches, used to represent concurrent systems with timing
dependencies [10, 11, 20], are time Petri nets (TPNs) by Merlin and Farber [21]. After
modelling the system in the above way, a suitable verification method is applied.

The main problem to cope with while verifying timed systems is the so-called state
explosion: in order to check whether the system satisfies a property we usually need to
search through its state space, which in most cases is very large due to infinity of the
dense time domain. Furthermore, in the case of concurrent systems the size of the state
space is likely to grow exponentially when the number of the components increases.
So, searching for verification methods which are able to overcome the above problem
is an important subject of research.
⋆ Partly supported by the Polish Ministry of Science and Higher Education under the grant

No. N N206 258035.

Bounded model checking (BMC) is an efficient verification method whose main
idea consists in considering a model truncated up to a specific depth. In turn, SAT-
based BMC verification consists in translating a model checking problem solvable on a
fraction of a model into a test of propositional satisfiability, which is then made using
a SAT-checker. The method has been successfully applied to verification of both timed
and untimed systems [3, 4, 7, 12, 16, 27, 32, 36]. In this paper we show how to adapt
the SAT-based BMC methods, presented in [27, 35, 36, 38] and developed for timed au-
tomata, to the case of time Petri nets. The adaptation exploits, in some sense, a method
of translating a time Petri net to a timed automaton, described in [28]. However, we
perform no structural translation between these two formalisms, but use directly the
transition relation defined by the translation. In order to benefit from the concurrent
structure of the system, we focus on distributed nets (i.e., sets of communicating pro-
cesses), and exploit a non-standard approach to their concrete semantics, which consists
in associating a clock with each of the processes [28]. In this work we deal with testing
whether the system (net) can ever be in a state satisfying certain properties (i.e., with
reachability checking), but the presented solutions can be also easily adapted to ver-
ification of other classes of properties for which SAT-based BMC methods exist (see
[23] for a survey). The algorithm has been implemented as an extension of the model
checker VerICS [13]. The next topic we dealt with was searching for bounds on which
the property tested can be reached (searching for a value of the parameter c in formulas
EF∼cp, corresponding to these considered in [14]). In the final part of the paper we
provide some preliminary experimental results.

To our knowledge, no BMC method for time Petri nets has been defined so far, al-
though some solutions for untimed Petri nets exist [16, 25]. Therefore, the main contri-
bution of this work consists in showing how to apply and implement for TPNs the above
technique of verification (a general idea of the approach has been already sketched in
[23], but no details are given there). As a result, we obtain an efficient method of check-
ing reachability, as well as searching for counterexamples for the properties expressible
by formulas of the logics ACTL∗ and TACTL. Although the adaptation of the BMC
methods is almost straightforward, the practical consequences seem to be quite useful.

The rest of the paper is organised as follows: in Sect. 3 we introduce time Petri nets,
and the abstraction of their state spaces, i.e., an extended detailed region graph. In the
further part we sketch the idea of reachability checking using BMC and SAT (Sect. 4),
and show its implementation for time Petri nets (Sect. 5). Searching for bounds on
time at which a state satisfying a property can be reached (parametric reachability) is
considered in Sect. 6. Sections 7 and 8 contain experimental results and concluding
remarks.

2 Related work

The methods of reachability checking for time Petri nets, mostly consisting in build-
ing an abstract model of the system, are widely studied in the literature [6, 5, 8, 9, 15,
19]. Detailed region graphs for time Petri nets, based on their standard semantics (i.e.,
the one associating a clock with each transition of the net) were presented in [22, 34].

Some BMC methods for (untimed) Petri nets were described in [16, 26]. Parametric
verification for time Petri nets was considered in [33].

The current work is a modification and extension of the paper [24] (published in
proceedings of a local workshop with the status of a technical report).

3 Time Petri Nets

Let IR+ denote the set of non-negative reals, Q the set of rationals, and IN (IN+) - the
set of (positive) natural numbers. We start with a definition of time Petri nets:

Definition 1. A time Petri net (TPN, for short) is a six-element tuple N = (P, T, F,m0,
Eft, Lft), where P = {p1, . . . , pnP } is a finite set of places, T = {t1, . . . , tnT } is a
finite set of transitions, F ⊆ (P ×T)∪ (T ×P) is the flow relation, m0 ⊆ P is the ini-
tial marking of N , and Eft : T → IN, Lft : T → IN ∪ {∞} are functions describing
the earliest and the latest firing time of the transition; where for each t ∈ T we have
Eft(t) ≤ Lft(t).

For a transition t ∈ T we define its preset •t = {p ∈ P | (p, t) ∈ F} and postset
t• = {p ∈ P | (t, p) ∈ F}, and consider only the nets such that for each transition
the preset and the postset are non-empty. We need also the following notations and
definitions:

– a marking of N is any subset m ⊆ P ;
– a transition t ∈ T is enabled at m (m[t⟩ for short) if •t ⊆ m and t•∩(m\•t) = ∅;

and leads from m to m′, if it is enabled at m, and m′ = (m \ •t)∪ t•. The marking
m′ is denoted by m[t⟩ as well, if this does not lead to misunderstanding;

– en(m) = {t ∈ T | m[t⟩} is the set of all the transitions enabled at the marking m
of N ;

– a marking m ⊆ P is reachable if there exists a sequence of transitions t1, . . . , tl ∈
T and a sequence of markings m0, . . . ,ml such that m0 = m0, ml = m, and for
each i ∈ {1, . . . , l} ti ∈ en(mi−1) and mi = mi−1[ti⟩;

– a marking m concurrently enables two transitions t, t′ ∈ T if t ∈ en(m) and
t′ ∈ en(m \ •t);

– a net is sequential if no reachable marking of N concurrently enables two transi-
tions.

It should be mentioned that the time Petri nets defined as above are often called 1-safe
in the literature.

Next, we introduce the notion of a distributed time Petri net. The definition is an
adaptation of the one from [17]:

Definition 2. Let I = {i1, . . . , in} be a finite ordered set of indices, and let N = {Ni =
(Pi, Ti, Fi,m

0
i , Efti, Lfti) | i ∈ I} be a family of 1-safe, sequential time Petri nets

(called processes), indexed with I, with the pairwise disjoint sets Pi of places, and sat-
isfying the condition (∀i1, i2 ∈ I)(∀t ∈ Ti1 ∩Ti2) (Efti1(t) = Efti2(t) ∧ Lfti1(t) =
Lfti2(t)). A distributed time Petri net N = (P, T, F,m0, Eft, Lft) is the union of
the processes Ni, i.e., P =

∪
i∈I Pi, T =

∪
i∈I Ti, F =

∪
i∈I Fi, m0 =

∪
i∈I m

0
i ,

Eft =
∪

i∈I Efti, and Lft =
∪

i∈I Lfti.

Notice that the function Efti1 (Lfti1) coincides with Efti2 (Lfti2 , resp.) for the joint
transitions of each two processes i1 and i2. The interpretation of such a system is a
collection of sequential, non-deterministic processes with communication capabilities
(via joint transitions).

waiting2

waiting1

setx0_1

enter1
trying1 critical1

idle2

start2

trying2 critical2

setx0_2

place 0

place 1

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2setx2−copy1

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0, ∆]

[0, ∆]

[0, ∆]

[0, ∆]

[δ,∞)

[0, ∆]

[0, ∆]
[δ,∞)

Fig. 1. A net for Fischer’s mutual exclusion protocol for n = 2

An example of a distributed TPN (Fischer’s mutual exclusion protocol1) is shown in
Fig. 1. The net consists of three communicating processes with the sets of places Pi =
{idlei, tryingi, enteri, criticali} for i = 1, 2, and P3 = {place0, place1, place2}.
All the transitions of the process N1 and all the transitions of the process N2 are joint
with the process N3.

In what follows, we consider distributed nets only, and assume that their initial
markings contain exactly one place of each of the processes of the net, and that all their
processes are state machines (i.e., for each i ∈ I and each t ∈ Ti, | • t| = |t • | = 1).
This implies that in any marking of N there is exactly one place of each process. It is
important to mention that a large class of distributed nets can be decomposed to satisfy

1 The system consists of some (here two) processes trying to enter their critical sections, and a
process used to coordinate their access. It is parameterised by the time-delay constants δ and
∆, whose relation influences preservation of the mutual exclusion property (see Sec. 7).

the above requirement [18]. Moreover, for t ∈ T we define IV(t) = {i ∈ I | •t ∩ Pi ̸=
∅}, and say that a process Ni is involved in a transition t iff i ∈ IV(t).

3.1 Concrete State Spaces and Models

The current state of the net is given by its marking and the time passed since each of
the enabled transitions became enabled (which influences the future behaviour of the
net). Thus, a concrete state σ of a distributed TPN N can be defined as an ordered
pair (m, clock), where m is a marking, and clock : I → IR+ is a function which for
each index i of a process of N gives the time elapsed since the marked place of this
process became marked most recently [28]. The set of all the concrete states is denoted
by Σ. The initial state of N is σ0 = (m0, clock0), where m0 is the initial marking, and
clock0(i) = 0 for each i ∈ I.

For δ ∈ IR+, let clock+δ denote the function given by (clock+δ)(i) = clock(i)+δ,
and let (m, clock)+δ denote (m, clock+δ). The states of N can change when the time
passes or a transition fires. In consequence, we introduce a labelled timed consecution
relation →c⊆ Σ × (T ∪ IR+)×Σ given as follows:

– In a state σ = (m, clock) a time δ ∈ IR+ can pass leading to a new state σ′ =

(m, clock + δ) (denoted σ
δ→c σ′) iff for each t ∈ en(m) there exists i ∈ IV(t)

such that clock(i) + δ ≤ Lft(t) (time-successor relation);
– In a state σ = (m, clock) a transition t ∈ T can fire leading to a new state
σ′ = (m′, clock′) (denoted σ

t→c σ′) if t ∈ en(m), for each i ∈ IV(t) we
have clock(i) ≥ Eft(t), and there is i ∈ IV(t) such that clock(i) ≤ Lft(t).
Then, m′ = m[t⟩, and for all i ∈ I we have clock′(i) = 0 if i ∈ IV(t), and
clock′(i) = clock(i) otherwise (action-successor relation).

Intuitively, the time-successor relation does not change the marking of the net, but in-
creases the clocks of all the processes, provided that no enabled transition becomes
disabled by passage of time (i.e., for each t ∈ en(m) the clock of at least one process
involved in the transition does not exceed Lft(t)). Firing of a transition t takes no time
- the action-successor relation does not increase the clocks, but only sets to zero the
clocks of the involved processes (note that each of these processes contains exactly one
input and one output place of t, as the processes are state machines); and is allowed pro-
vided that t is enabled, the clocks of all the involved processes are greater than Eft(t),
and there is at least one such process whose clock does not exceed Lft(t).

Then, we define a timed run of N starting at a state σ0 ∈ Σ (σ0-run) as a maximal
sequence of concrete states, transitions and time passings ρ = σ0

δ0→c σ0 + δ0
t0→c

σ1
δ1→c σ1 + δ1

t1→c σ2
δ2→c . . ., where σi ∈ Σ, ti ∈ T and δi ∈ IR+ for all i ∈ IN. A

state σ∗ ∈ Σ is reachable if there exists a σ0-run ρ and i ∈ IN such that σ∗ = σi + δi,
where σi + δi is an element of ρ. The set of all the reachable states of N is denoted by
ReachN .

Given a set of propositional variables PV , we introduce a valuation function Vc :
Σ → 2PV which assigns the same propositions to the states with the same markings.
We assume the set PV to be such that each q ∈ PV corresponds to exactly one place

p ∈ P , and use the same names for the propositions and the places. The function Vc

is defined by p ∈ Vc(σ) ⇔ p ∈ m for each σ = (m, ·). The structure Mc(N) =
((T ∪ IR+, Σ, σ0,→c), Vc) is called a concrete (dense) model of N . It is easy to see
that concrete models are usually infinite2.

The concrete model Mc(N) defined above involves timed steps of arbitrary length.
However, it can be proven that without loss of generality one can consider a model with
a restricted set of timed labels, i.e. M̃c(N) = ((T ∪ [0, cmax(N)+1], Σ, σ0,→r), Vc),
where by cmax(N) we mean the greatest finite value of Eft and Lft of the net N . In
order to show that M̃c(N) preserves the behaviours of the net, we shall prove that it is
bisimulation equivalent with Mc(N), where the bisimulation equivalence is defined in
the following way:

Definition 3. Let M = ((L, S, s0,→), V) and M ′ = ((L′, S′, s′0,→′), V ′) be two
models of a time Petri net N . A relation ;s⊆ S′ × S is a simulation from M ′ to M if
the following conditions hold:

• s′0 ;s s0,
• for each s ∈ S and s′ ∈ S′, if s′ ;s s, then V (s) = V ′(s′), and for every s1 ∈ S

such that s l→ s1 for some l ∈ L, there is s′1 ∈ S′ such that s′ l′→
′
s′1 for some

l′ ∈ L′ and s′1 ;s s1.

The model M ′ simulates M (M ′ ;s M) if there is a simulation from M ′ to M . Two
models M and M ′ are called bisimulation equivalent if M ′ ;s M and M(;s)

−1M ′,
where (;s)

−1 is the inverse of ;s.

Let cm1 denote the value cmax(N) + 1. Then, we can prove the following lemma:

Lemma 1. For a given distributed time Petri net N the models Mc(N) = ((T ∪
IR+, Σ, σ0,→c), Vc and M̃c(N) = (T ∪ [0, cm1], Σ, σ0,→r), Vc) are bisimulation
equivalent.

A proof can be found in the appendix.

3.2 Extended Detailed Region Graph

In order to deal with countable structures instead of uncountable ones, we introduce
extended detailed region graphs for distributed TPNs. They correspond to the well-
known graphs defined for timed automata in [1] and adapted for time Petri nets [22,
34], but involve disjunctions of constraints, the reflexive transitive closure of the time
successor of [1], and make no use of the maximal constant appearing in the invariants
and enabling conditions. To do this, we assign a clock to each of the processes of a net.

Given a distributed time Petri net N whose processes are indexed with a set of
indices I with |I| = n for some n ∈ IN+. Let X = {x1, . . . , xn} be a finite set of
real-valued variables, called clocks. A clock valuation on X is a n-tuple v ∈ IRn

+. The

2 Finite concrete models are e.g. these for nets in which for each transition t it holds Eft(t) =
Lft(t) = 0.

value of a clock xi in v is denoted by v(xi). For a valuation v and a subset of clocks
X ⊆ X , by v[X := 0] we denote the valuation v′ such that v′(x) = 0 for all x ∈ X ,
and v′(x) = v(x) for all x ∈ X \ X . Moreover, for some δ ∈ IR+, by v + δ we
denote the valuation v′ such that v′(x) = v(x) + δ for all x ∈ X . The set CX of clock
constraints over X is defined by the following grammar:

cc := true | xi ∼ c | cc ∧ cc | cc ∨ cc,

where xi ∈ X , ∼∈ {≤, <,=, >,≥} and c ∈ IN. A valuation v satisfies a constraint
cc ∈ CX (denoted v |= cc) iff

– cc is of the form true,
– v(xi) ∼ c, and cc is of the form xi ∼ c,
– v |= cc1 ∧ v |= cc2, and cc is of the form cc1 ∧ cc2,
– v |= cc1 ∨ v |= cc2, and cc is of the form cc1 ∨ cc2.

The set of clock valuations satisfying a given constraint cc is denoted by [[cc]] ([[cc]] ⊆
IRn

+).
We assume the clock valuations to be such that for any concrete state σ = (m, clock),

for each i ∈ I we have v(xi) = clock(i). Thus, the clock constraint expressing the con-
ditions under which the net can be in a marking m (the marking invariant) can be
written as

inv(m) =
∧

t∈en(m) s.t. Lft(t)<∞

∨
i∈IV(t)

xi ≤ Lft(t),

if {t ∈ T | t ∈ en(m) ∧ Lft(t) < ∞} ̸= ∅, and as inv(m) = true otherwise, which
intuitively means that staying in m is allowed as long as for each enabled transition
t with finite latest firing time there is a process Ni, involved in this transition, whose
clock is not greater than Lft(t) (and therefore t has not been disabled by passage of
time). Moreover, for a marking m and a transition t ∈ en(m) we define the constraint

firet(m) =
∧

i∈IV(t)

xi ≥ Eft(t)

which expresses the condition under which t can be fired at m (note that the marking
invariant, which obviously holds if N is in the marking m, implies that at least one
process involved in t has the value of its clock not greater than Lft(t)). Given a marking
m and t ∈ en(m), firing t at m results in assigning the value 0 to the clocks belonging
to the set

reset(m, t) = {xi ∈ X | i ∈ IV(t)}.

Having all the above components, we can introduce the extended detailed region
graph for N . Let CN ⊆ CX be a non-empty set of constraints defined by

cc := xi ≥ Eft(t) | xi ≤ Lft(t′) | cc ∧ cc,

where xi ∈ X , and, for a given i ∈ I, t ∈ Ti and t′ ∈ Ti ∩ {t ∈ T | Lft(t) < ∞}.
Moreover, let frac(a) denote the fractional part of a number a ∈ IR+, and ⌊a⌋ denote
its integral part. Then, we define equivalence classes of clock valuations [39]:

Definition 4. For two clock valuations v, v′ ∈ IRn
+, v ≃N v′ iff for all x, x′ ∈ X the

following conditions are met:

1. ⌊v(x)⌋ = ⌊v′(x)⌋,
2. frac(v(x)) = 0 iff frac(v′(x)) = 0,
3. frac(v(x)) < frac(v(x′)) iff frac(v′(x)) < frac(v′(x′)).

The last condition implies that frac(v(x)) = frac(v(x′)) iff frac(v′(x)) = frac(v′(x′)).
We call the equivalence classes of the relation ≃N (extended) detailed zones for X ,

and denote the set of all of them by DZ(n). It is easy to see from the definition of ≃N
that the number of extended detailed zones is countable, and that for each cc ∈ CN and
each Z ∈ DZ(n) either v |= cc for all v ∈ Z, or v ̸|= cc for all v ∈ Z. We say that
Z ∈ DZ(n) satisfies a clock constraint cc ∈ CX (denoted by Z |= cc) iff we have
v |= cc for each v ∈ Z. Given an extended detailed zone Z ∈ DZ(n), we introduce the
operation Z[X := 0] = {v[X := 0] | v ∈ Z}. Moreover, let Z0 = {v ∈ IRn

+ | (∀x ∈
X) v(x) = 0}.

By an (extended detailed) region we mean a pair (m,Z), where m ⊆ P and Z ∈
DZ(n). Notice that the set of all the extended detailed regions is countable. Given a
concrete state σ = (m′, clock′) we define σ ∈ (m,Z) if m = m′ and v ∈ Z, where
v is the clock valuation satisfying v(xi) = clock′(i) for all i ∈ I. Next, we define a
countable abstraction of the concrete state space of N - an extended detailed region
graph.

Definition 5. The extended detailed region graph for a net N is a structure Γ (N) =
(T ∪ {τ},W,w0,→), where W = 2P × DZ(n), w0 = (m0, Z0), and the successor
relation →⊆ W × (T ∪ {τ})×W , where τ ̸∈ T , is defined in the following way:

– (m,Z)
τ→ (m,Z ′) iff Z,Z ′ |= inv(m) and for each v ∈ Z there exists δ ∈ [0, cm1]

such that v + δ ∈ Z ′ (time successor);
– for t ∈ T , (m,Z)

t→ (m′, Z) iff t ∈ en(m), m′ = m[t⟩, Z |= firet(m)∧ inv(m),
Z ′ = Z[reset(m, t) := 0], and Z ′ |= inv(m′) (action successor).

By an abstract model based on Γ (N) we mean a structure MΓ (N) = (Γ (N), V),
where for each w ∈ W and each σ ∈ w we have V (w) = Vc(σ).

Notice that the definition of τ→ is correct: in spite of a possibly non-convex form of
[[inv(m)]], its definition ensures that if Z,Z ′ ∈ DZ(n), Z,Z ′ |= inv(m) and (m,Z)

τ→
(m,Z ′), then for any other Z ′′ ∈ DZ(n) s.t. (m,Z)

τ→ (m,Z ′′) and (m,Z ′′)
τ→

(m,Z ′) (i.e., for a region (m,Z ′′) “traversed” when the time passes between (m,Z)
and (m,Z ′)) the condition Z ′′ |= inv(m) is satisfied as well. This follows from the fact
that if in the zone Z some xi ∈ X satisfies the condition v(xi) > Lft(t), then the same
holds also for all the time successors of (m,Z), and, on the other hand, if it satisfies
v(xi) ≤ Lft(t) and this condition is violated for some Z ′′ s.t. (m,Z)

τ→ (m,Z ′′), then
there is no Z ′ s.t. (m,Z ′′)

τ→ (m,Z ′) for which it holds again.

In order to show that the model MΓ (N) preserves the behaviours of the net, we
shall prove the following lemma:

Lemma 2. For a given distributed time Petri net N the models M̃c(N) = ((T ∪
[0, cm1], Σ, σ0,→r), Vc) and MΓ (N) = ((T ∪ {τ},W,w0,→), V) are bisimulation
equivalent.

A proof can be found in the appendix.

4 Testing Reachability via BMC and SAT

The reachability problem for a system S consists in checking, given a property p,
whether S can ever be in a state where p holds (which can be described by the CTL
formula EFp - “there exists a path s.t. at that path the property p finally holds”). The
property is expressed in terms of propositional variables. In the case the system S is
represented by a time Petri net N , the propositions correspond to the set of its places
P . Therefore, the reachability verification can be translated to testing whether the set
ReachN contains a state whose marking includes a given subset of P . Checking this
can be performed by an explicit exploration of the concrete state space (model), but due
to its infinite size such an approach is usually very inefficient in practice.

If a reachable state satisfying the property p exists, this can be usually proven ex-
ploiting a part of the model only. This enables us to apply the bounded model checking
approach. The basic idea of testing reachability using BMC consists in searching for a
reachability witness of a bounded length k (i.e., for a path of a length k ∈ IN+, called a
k-path, which leads from the initial state to a state satisfying p). Searching for a reach-
ability witness is performed by generating a propositional formula that is satisfiable iff
such a witness exists. Satisfiability of this formula is checked using a SAT-solver.

To apply the above procedure, we represent the states of a model M(N) for a given
time Petri net N as vectors of boolean variables, and express the transition relation
of the model in terms of propositional formulas. Then, we encode all the k-paths of
M(N) starting at its initial state as a propositional formula αk, and check satisfiability
of a formula γk which is the conjunction of αk and a propositional formula expressing
that the property p holds at some state of a k-path. The above process is started from
k = 1, and repeated iteratively up to k = |M |. It, however, can be stopped, since if
for some k the formula γk is satisfiable, then reachability of a state is proven, and no
further tests are necessary.

The above method can be inefficient if no state satisfying p exists, since the length
of the k-path strongly influences the size of its propositional encoding. Therefore, in
order to prove unreachability of a state satisfying p, another solution, shown in [38], is
applied. A sketch of the idea is as follows: using the BMC procedures, we search for a
longest k-path starting from an arbitrary state of M (a free path) such that p holds only
in the last state of this path. If such a path π is found, then this means that in order to
learn whether a state satisfying p is reachable we need to explore the model only to the
depth equal to the length of π.

5 Implementation for Time Petri Nets

In order to apply the above approach to verification of a particular distributed time
Petri net N , we deal with a model obtained by a discretisation of its extended detailed

region graph. The model is of an infinite but countable structure, which, however, is
sufficient for BMC (which deals with finite sequences of states only). Below, we show
this discretisation, and then encode the transition relation of the model.

5.1 Discretisation of Extended Detailed Region Graphs

Let Γ (N) = (T ∪ {τ},W,w0,→) be the extended detailed region graph for a dis-
tributed time Petri net N , and X be the set of clocks corresponding to its processes.
Instead of dealing with the whole extended detailed region graph Γ (N), we discretise
this structure, choosing for each region one or more appropriate representatives. The
discretisation scheme is based on the one for timed automata [39], and preserves the
qualitative behaviour of the underlying system.

Let n be the number of clocks, and cmax(N) be the largest constant appearing in
CN (i.e., the greatest finite value of Eft and Lft), and let cm1 = cmax(N) + 1. For
each m ∈ IN, we define

Dm = {d ∈ Q | (∃k ∈ IN) d · 2m = k},

and
Em = {e ∈ Q | (∃k ∈ IN) e · 2m = k ∧ e ≤ cm1}.

The discretised clock space is defined as Dn, where D =
∪∞

m=1 Dm. Similarly, the set
of possible values of time passings is defined as E =

∪∞
m=1 Em. Such a clock space

and the set of lengths of timed steps ensure that for any representative of an extended
detailed region there is another representative of this region which can be reached by
a time step of a length e ∈ E. It should be mentioned that such a solution (different
than in [24]) allows us to compute precisely the time passed along a k-path, what is
important for the algorithms for parametric verification (and was difficult while using
the so-called “adjust transitions” of [24]).

The discretised region graphs and models are defined as follows:

Definition 6. The extended discretised region graph based on the extended detailed
region graph Γ (N), is a structure Γ̃ (N) = (T ∪E, W̃ , w0,→d), where W̃ = 2P ×Dn,
w0 = (m0, Z0), and the labelled transition relation →d⊆ W̃ × (T ∪E)×W̃ is defined
as

1. for t ∈ T , (m, v)
t→d (m′, v′) iff t ∈ en(m), m′ = m[t⟩, v |= firet(m)∧ inv(m),

v′ = v[reset(m, t) := 0], and v′ |= inv(m′) (action transition);
2. for δ ∈ E, (m, v)

δ→d (m, v′) iff v′ = v + δ and v, v′ |= inv(m) (time transition).

Given an abstract model MΓ (N) = (Γ (N), V) based on Γ (N) = (T∪{τ},W,w0,

→) and the discretised model Γ̃ (N), we can define a discretised model based on
Γ̃ (N), which is a structure M̃Γ (N) = (Γ̃ (N), Ṽ), where Ṽ : W̃ → 2PV is a val-
uation function such that for each w̃ ∈ W̃ being a representative of w ∈ W we have
Ṽ (w̃) = V (w). The model has the following property:

Lemma 3. For a given time Petri net N the models MΓ (N) = (Γ (N), V) and M̃Γ (N) =

(Γ̃ (N), Ṽ) are bisimulation equivalent.

A proof can be found in the appendix. From Lemmas 1, 2 and 3 the discretised model
is bisimulation equivalent with the concrete one. So, it preserves the behaviours of the
net, and can be used for reachability verification.

5.2 Encoding of the Transition Relation of the Discretised Model

In order to apply SAT-based verification methods described in Sec. 4, we need to rep-
resent (encode) the discretised model M̃Γ (N) as a boolean formula. To do that, we
assume that each state w ∈ W̃ is given in a unique binary form, i.e., w̃ ∈ {0, 1}r,
where r(m) is a function of the greatest exponent appearing in the denominators of
clock values in w̃ (see the appendix or [39] for details). The digits in the binary form
of w are denoted by w(1), . . . , w(r(m)). Therefore, the elements of W̃ can be “gener-
ically” represented by a vector w = (w[1], . . . ,w[r(m)]) of propositional variables
(called a symbolic state), whose valuation (i.e., assignment of values to the variables)
represents w iff for each j ∈ {1, . . . , r(m)} we have w[j] = true iff w(j) = 1, and
w[j] = false otherwise. Moreover, each k-path in Γ̃ (N) can be represented by a finite
sequence w0, . . . ,wk of symbolic states, and again, such a representation is called a
symbolic k-path.

In what follows, by state variables we mean propositional variables used to encode
the states of Γ̃ (N). The set of all the state variables, containing the symbols true and
false, will be denoted by SV , and the set of all the propositional formulas built over
SV - by SF . The elements of SF are called state formulas.

In order to encode the transition relation of M̃Γ (N), we introduce the following
functions and propositional formulas:

– lit : {0, 1} × SV → SF , which is defined by lit(0, p) = ¬p and lit(1, p) = p;
– Iw(w) :=

∧r
j=1 lit(w(j),w[j]) which is true iff the vector w represents the state

w;
– T(w,w′) which is true iff for the states w,w′ ∈ W̃ , represented by vectors w and
w′, respectively, it holds w e→d w′ for some e ∈ T ∪ E.

The formula which encodes all the k-paths in Γ̃ (N) starting at the initial state is of the
form

αk := Iw0(w0) ∧
k−1∧
j=0

T(wj ,wj+1),

where w0, . . . ,wk is a symbolic k-path. In practice, we consider k-paths with some
restrictions on repetition of the action and time transitions, and on lengths of the time
steps (see the appendix for details). Encoding the fact that a state satisfies a given prop-
erty is straightforward.

6 Parametric Reachability Checking

Besides testing whether a state satisfying a property p is reachable, one can be interested
in finding a minimal time in which a state satisfying p can be reached, or finding a

pin
t

[n, n]

pout pin pout

pmid t2t1

[n, n] [0, 0]

(a) (b)

Fig. 2. The processes added to the nets to test parametric reachability

minimal time after which p does not hold. To this aim, parametric reachability checking
can be used.

In order to be able to perform the above verification, we introduce an additional
restriction on the nets under consideration, i.e., require they contain no cycle C of tran-
sitions such that for each t ∈ C we have Eft(t) = 0 (which guarantees that the
time increases when the net progresses, and is a typical assumption when analysing
timed systems). Moreover, we introduce the notations EF∼cp, with ∼∈ {≤, <,>,≥}
and c ∈ IN, which express that a state satisfying p is reached in a time satisfying the
constraint in the superscript3. The problems intuitively presented at the beginning of
the section can be expressed respectively as finding a minimal c such that EF<cp (or
EF≤cp) holds, and finding a maximal c such that EF>cp (or EF≥cp) holds.

An algorithm for finding a minimal c such that EF≤cp holds looks as follows:

1. Using the standard BMC approach, find a reachability witness of minimal length4;
2. read from the witness the time required to reach p (denoted x). Now, we know that

c ≤ ⌈x⌉ (where ⌈·⌉ is the ceiling function);
3. extend the verified TPN with a new process N , which is composed of one transition

t s.t. Eft(t) = Lft(t) = n, and two places pin, pout with •t = {pin} and t• =
{pout} (see Fig. 2(a)),

4. set n to ⌈x⌉ − 1,
5. Run BMC to test reachability of a state satisfying p ∧ pin in the extended TPN,
6. if such a state is reachable, set n := n− 1 and go to 5,
7. if such a state is unreachable, then c := n+ 1, STOP.

Some comments on the above algorithm are in place. First of all, it should be ex-
plained that the BMC method described in Sec. 4 finds a reachability witness of a short-
est length (i.e., involving the shortest possible k-path). However, the shortest path is not
necessarily that of minimal time. An example can be seen in Fig. 3, where the shortest
path leading to the place satisfying the property pfin consists of two time steps and two
action steps (i.e., passing one unit of time, then firing t2, passing 10 time units and then
firing t4), whereas minimal time of reaching such a state is 3, which corresponds to
firing t1, t3 and t5, each of them preceded by passing one unit of time. Due to this, after
finding a reachability witness for p in Step 1 of the algorithm, we test whether p can be
reached in a shorter time. Extending the net with a new process allows us to express the
requirement that the time at which p is reached is not greater than n (n ∈ IN), since at
time n the transition t has to fire, which unmarks the place pin.

3 The full version of the logic, for a discrete semantics and with ∼ restricted to ≤ only, can be
found in [14].

4 if we cannot find such a witness, then we try to prove unreachability of p.

[10, 10]

pfin

t3

[1, 1]

[1, 1][1, 1]

[1, 1]

t1

t2

t5

t4

Fig. 3. An example net

The second comment to the algorithm concerns the possible optimisations. Firstly,
the algorithm can be optimised by applying one of the well-known searching algorithms
instead of decreasing n by one in each step. Secondly, it is easy to see that if BMC finds
a reachability witness for p of length k, then a witness for reaching p in a smaller time
cannot be shorter than k (if such a witness existed, it would have been found previously).
Thus, in Step 5 of the algorithm the BMC method can start with k equal to the length
of the witness found in the previous run, instead of with k = 1.

Finally, Step 7 of the algorithm should be explained. In order to decide that no state
satisfying p∧ pin is reachable, we should either prove unreachability of that state using
the method of [38], or to find an upper bound on the length of the k-paths such that
unreachability of p ∧ pin on the paths up to this length allows us to decide that no
state of interest is reachable. We can do the latter in some cases only, i.e., when some
restrictions on the nets considered are assumed. This is specified by the following two
lemmas:

Lemma 4. If a net N contains no transition t with Eft(t) = 0, then the length of a
reachability witness for EF≤cp, in which time- and action steps alternate, is bounded
by 2 · c.

Proof. We make use of the result of [29], which states that each reachable marking
of a TPN can be reached on a path whose time steps are of integer values only. Since
from the structure of the net and from the structure of the path we have that zero-time
steps are not allowed, the shortest time steps are of length one. The bound 2c is then
straightforward.

Lemma 5. Let N be a distributed net consisting of n processes Ni = (Pi, Ti, Fi,m
0
i ,

Efti, Lfti) (i ∈ I = {1, . . . , n}), each of which contains no cycle besides (possibly)
being a cycle itself and satisfies the condition ∀t1, t2 ∈ Ti (•t1 ∩ Pi = •t2 ∩ Pi ⇐⇒
t1 • ∩Pi = t2 • ∩Pi). The length of a reachability witness for EF≤cp, in which time-
and action steps alternate, is bounded by K = 2 · Σn

i=1zi, where each zi, for i ∈ I, is
computed according to the following algorithm:

1. set g := 0, time := 0, and nextTrans to such t ∈ Ti that •t = m0
i and Eft(t) =

min(Eft(t′) | t′ ∈ Ti ∧ •t′ = m0
i),

2. do
∗ time := time+ Eft(nextTrans);
∗ if time ≤ c then set g := g + 1 and sg := nextTrans;

∗ set nextTrans to such t ∈ Ti that •t = sg−1• and Eft(t) = min(Eft(t′) |
t′ ∈ Ti ∧ •t′ = sg−1•),

while time <= c and sg • ∩Pi ̸= ∅,
3. while Eft(sg) = 0 and (•sg ∩ Pi) ̸∈ Prop(p), where Prop(p) is the set of propo-

sitions occurring in the property p, do g := g − 1;
4. setzi := g.

Proof. From the structure of a process of N , we have that the algorithm for zi computes
first the number of transitions which can be executed in time c provided that Ni proceeds
as fast as possible, and then optimises the value obtained by removing a number of final
steps which influence neither the time nor reaching the property tested. The length of
the path in which time- and action steps alternate is therefore equal to 2zi. Taking the
sum of these values for all the processes corresponds to considering the worst case, in
which all the processes proceed independently, performing as many steps as possible.

An algorithm for finding a minimal c such that EF<cp holds is similar to the previ-
ous one:

1. Using the standard BMC approach, find a reachability witness of minimal length5;
2. read from the witness the time required to reach p (denoted x). Now, we know that

c ≤ ⌈x⌉;
3. extend the verified TPN with a new process N , which is composed of two transi-

tions t1, t2 s.t. Eft(t1) = Lft(t1) = n, Eft(t2) = Lft(t2) = 0, •t1 = {pin},
t1• = •t2 = {pmid} and t2• = {pout} (see Fig. 2(b)),

4. set n to ⌈x⌉ − 1,
5. run BMC to test reachability of a state satisfying p ∧ pin in the extended TPN,
6. if such a state is reachable, set n := n− 1 and go to 5,
7. if such a state is unreachable, set n := n+ 1 and run BMC to test reachability of a

state satisfying p ∧ pmid in the extended TPN,
8. if such a state is reachable, then c := n+ 1, STOP,
9. if such a state is unreachable, then c := n, STOP.

In this case, the additional process contains the place which can be marked only if the
time passed since the net started is equal to n. The algorithm proceeds in the following
way: the Steps 1 - 6 (analogous as in the previous algorithm) are aimed at finding a
minimal n such that EF≤np holds. Then, it is tested whether p can be reached exactly at
time n. Depending on the result of this test, the bound returned is either n or n+1 (which
follows from the result of [30] stating that the minimal time duration of a transition
sequence is an integer value). The improvements to the algorithms, as well as methods
of deciding unreachability in Steps 7 and 9, are the same as in the previous case.

The next pair of the algorithms is aimed at finding a minimal time after which no
state satisfying p is reachable. This can be done by searching for a maximal c for which
EF≥cp (or EF>cp) holds. The algorithm for EF≥cp is as follows:

1. using a standard BMC approach, test whether there is a k-path π such that p is
reachable from its arbitrary state (which is done by testing the condition W speci-
fied below),

5 if we cannot find such a witness, then we try to prove unreachability of p.

2. if such a k-path can be found, then no maximal c exists, STOP.
3. if such a k-path cannot be found then, using the standard BMC approach, find a

reachability witness for p of a minimal length6.
4. read from the witness the time x required to reach p,
5. extend the verified TPN with a new process which is composed of one transition

t s.t. Eft(t) = Lft(t) = n, and two places pin, pout with t• = {pout} and
•t = {pin},

6. set n to ⌈x⌉, and set an upper bound b (b ≥ n) on c to be searched for7,
7. run BMC to test reachability of a state satisfying p ∧ pout in the extended TPN,
8. if such a state is reachable and n+ 1 < b, then set n := n+ 1 and go to 7,
9. if such a state cannot be found or n+ 1 ≥ b, then set c := n− 1, STOP.

Testing whether there is a k-path s.t. p is reachable from its arbitrary state (testing
the condition W) is done by checking whether there is a path which has a loop, and
there is a state of this loop at which p holds. In order to ensure that there is no maximal
c, we need also the path to be progressive, i.e., such that its loop contains at least one
non-zero time step8.

Again, some optimisations to the algorithm can be introduced. The first one can
consist in applying a well-known searching technique instead of increasing n by one
in each step. The second is based on an observation that each reachability witness for
EF≥np is also a reachability witness for EF≥n−1p. Thus, no witness for EF≥np can be
shorther than the shortest one found for EF≥n−1p (if a shorter witness existed, it would
have been found while searching for a witness for EF≥n−1p). Thus, while running
Step 7 of the algorithm, we can start with k equal to the length of the witness found in
the previous run, instead of with k = 1.

It should be noted that, contrary to the former cases, we cannot set any upper bound
on the length of k-paths to be tested in Step 9, besides the one which follows from the
value b assumed in the algorithm. In this case, computing the bound is done analogously
as we shown in the description of the algorithm for EF≤cp.

An algorithm for checking EF>cp (and searching for a maximal c) is as follows:

1. using a standard BMC approach, test whether there is a k-path π such that p is
reachable from its arbitrary state (which is done by testing the condition W),

2. if such a k-path can be found, then no maximal c exists, STOP.
3. if such a k-path cannot be found then, using the standard BMC approach, find a

reachability witness for p of a minimal length9.
4. read from the witness the time x required to reach p,

6 if we cannot find such a k, then we try to prove unreachability of p
7 the value b can be also a parameter of the algorithm
8 Formally, let π be a k-path, π(i) be the i-th state of the path, δπ(i, i + 1) be the time passed

while moving from π(i) to π(i + 1), loop(π) = {h | 0 ≤ h ≤ k ∧ π(k) → π(h)}, and
Πk(s) be the set of all the k-paths starting at s. The bounded semantics for W is as follows:
s |= W ⇐⇒ (∃π ∈ Πk(s))(loop(π) ̸= ∅ ∧ (∃l ∈ loop(π)(∃l ≤ j ≤ k)(π(j) |=
α ∧Σl≤j<kδpi(j, j + 1) > 0)).

9 if we cannot find such a k, then we try to prove unreachability of p

5. extend the verified TPN with a new process N , which is composed of two transi-
tions t1, t2 s.t. Eft(t1) = Lft(t1) = n, Eft(t2) = Lft(t2) = 0, •t1 = {pin},
t1• = •t2 = {pmid} and t2• = {pout},

6. set n to ⌈x⌉, and set an upper bound b (b ≥ n) on c to be searched for10,
7. run BMC to test reachability of a state satisfying p ∧ pout in the extended TPN,
8. if such a state is reachable and n+ 1 < b, then set n := n+ 1 and go to 7,
9. if such a state is unreachable or n + 1 > b, set n := n − 1 and run BMC to test

reachability of p ∧ pmid) in the extended TPN,
10. if such a state is reachable, then c := n− 1, STOP;
11. if such a state is unreachable, then c := n, STOP.

The idea behind the algorithm is similar to the previous approaches: first a maximal
n for which EF≥np is found, then the algorithm tests whether reaching p at time n is
possible. The final result depends on the answer to the latter question.

It should be mentioned that in practice all the above methods are not complete (as
the BMC itself is not). It can happen that we are not able to prove unreachability of
a state, compute an upper bound on the length of a k-path to be tested, or, in spite of
finding such an upper bound, are not able to test the paths up to this length using the
resources given. However, the preliminary experiments show that the methods can give
quite good results.

7 Experimental Results

The experimental results presented below are preliminary, since some methods men-
tioned in the previous sections are not represented. We have performed our experiments
on the computer equipped with Intel Pentium Dual CPU (2.00 GHz), 2 GB main mem-
ory and the operating system Linux 2.6.28. We have tested some distributed time Petri
nets for the standard Fischer’s mutual exclusion protocol (mutex) [2]. The system con-
sists of n time Petri nets, each one modelling a process, plus one additional net used to
coordinate their access to the critical sections. A distributed TPN modelling the system
is shown in Figure 1, for the case of n = 2. Mutual exclusion means that no two pro-
cesses are in their critical sections at the same time. The preservation of this property
depends on the relative values of the time-delay constants δ and ∆. In particular, the
following holds: ”Fischer’s protocol ensures mutual exclusion iff ∆ < δ”.

Our first aim was to check that if ∆ ≥ δ, then the mutual exclusion is violated.
We considered the case with ∆ = 2 and δ = 1. It turned out that the conjunction of
the propositional formula encoding the k-path and the negation of the mutual exclusion
property (denoted p) is unsatisfiable for every k < 12. The witness was found for
k = 12. We were able to test 40 processes. The results are shown in Fig. 4 (left).

Our second aim was to search for a minimal c such that EF≤cp holds. The results are
presented in Fig. 4 (right). In the case of this net, we are not able to compute an upper
bound on the length of the k-path. Unfortunately, we also could not test unreachability,
since the method is not implemented yet. Again, we considered the case with ∆ = 2
and δ = 1, and the net of 25 processes. The witness was found for k = 12, and the time

10 the value b can be also a parameter of the algorithm

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 1937 5302 0.2 3.5 0.0 1.7 NO
2 - 36448 107684 1.4 7.9 0.4 9.5 NO
4 - 74338 220335 2.9 12.8 3.3 21.5 NO
6 - 112227 332884 4.2 17.6 14.3 37.3 NO
8 - 156051 463062 6.1 23.3 257.9 218.6 NO

10 - 197566 586144 7.8 28.5 2603.8 1153.2 NO
12 - 240317 712744 9.7 34.0 87.4 140.8 YES

32.4 34.0 2967.1 1153.2

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 840 2194 0.0 3.2 0.0 1.4 NO
2 - 16263 47707 0.5 5.2 0.1 4.9 NO
4 - 33835 99739 1.0 7.3 0.6 9.1 NO
6 - 51406 151699 1.6 9.6 1.8 13.8 NO
8 - 72752 214853 2.4 12.3 20.6 27.7 NO

10 - 92629 273491 3.0 14.8 321.4 200.8 NO
12 - 113292 334357 3.7 17.5 14.3 39.0 YES
12 7 120042 354571 4.1 18.3 45.7 59.3 YES
12 6 120054 354613 4.0 18.3 312.7 206.8 YES
12 5 120102 354763 4.0 18.3 64.0 77.7 YES
12 4 120054 354601 4.1 18.3 8.8 35.0 YES
12 3 115475 340834 3.9 17.7 24.2 45.0 YES
12 2 115481 340852 3.9 17.8 138.7 100.8 YES
12 1 115529 341008 3.9 17.7 2355.4 433.4 NO

40.1 18.3 3308.3 433.4

Fig. 4. Results for mutex, ∆ = 2, δ = 1, mutual exclusion violated. Left: proving reachability
for 40 processes, right: parametric verification for 25 processes. The tpnBMC column shows the
results for the part of the tool used to represent the problem as a propositional formula (a set of
clauses); the column RSat displays the results of running the RSat solver for the set of clauses
obtained from tpnBMC.

of the path found was between 8 and 9. The column n shows the values of the parameter
in the additional component. For n = 1 and k = 12 unsatisfiability was returned, and
testing the property on a longer path could not be completed in a reasonable time.

t2t1

[0, 1]
t3

[1, 2]

[0, 1]

p2 p3p1

t4

[0, 1]
t6

[A,B]

[0, 1]

p5p4 p6t5 ti1

[0, 1]
ti3

[1, 2]

[0, 1]

pi1 pi3ti2

t2t1

[0, 1]
t3

[2, 4]

[0, 1]

p2 p3p1

pi2

Ni

(a) (b)

Fig. 5. Time Petri nets tested in experiments

The next two (scalable) examples were the nets shown in Fig. 5. The net (a) shown in
the left-hand side of the figure was scaled by increasing Eft(t2) and Lft(t2), according
to the schema A = 2u, B = 4u, for u = 1, 2, The property tested was EF(p3∧p6).
The net (b) shown on the right was scaled by increasing the number of components
Ni (i = 1, 2, . . .). In this case, reachability of a state satisfying p3 ∧

∧j
i=1 p

i
3 was

checked (where j is a number of identical processes). For both the nets we searched for
a minimal time c at which a given property can be reached, and for both of them we were

able to compute an upper bound on the length of the k-path to be tested while checking
reachability in a time not exceeding n. For the net (a) the bound is K = 2(z1+z2+z3),
where z1 = 3n − 1, z2 = 3⌈n/(2u)⌉ − 1 and z3 = 1 (where the third process is that
added to test reachability in time n); whereas for the net (b) containing j identical
components it is given by K = z0 + Σj

i=1zi + zj+1, where the bound for the first
process is z1 = 3⌈n/2⌉−1, the bound for each of the identical processes is zi = 3n−1
(i = 1, . . . , j), and the bound for the additional process is zj+1 = 1. The results for the
net (a), with the values of the coefficient u given, are presented in Fig. 6. In the case of

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 21 34 0.0 3.0 0.0 1.3 NO
2 - 603 1653 0.0 3.0 0.0 1.4 NO
4 - 1396 3909 0.0 3.1 0.0 1.6 NO
6 - 2174 6097 0.0 3.2 0.0 1.7 NO
8 - 3347 9429 0.1 3.3 0.0 2.0 NO

10 - 4345 12213 0.1 3.5 0.0 2.2 NO
12 - 5413 15175 0.1 3.6 0.0 2.5 NO
14 - 6551 18315 0.1 3.7 0.1 2.8 YES
14 7 8812 24886 0.1 4.0 0.1 3.3 NO
16 7 11299 31987 0.2 4.2 0.1 3.8 NO
18 7 13151 37159 0.2 4.5 0.2 4.2 NO
20 7 15103 42595 0.2 4.8 118.9 17.1 NO
22 7 17155 48295 0.3 5.0 15.6 8.3 NO
24 7 19307 54259 0.3 5.2 18.9 9.7 NO
26 7 21559 60487 0.3 5.5 133.5 19.0 NO
28 7 23911 66979 0.4 5.8 167.1 26.5 NO
30 7 27930 78424 0.4 6.2 96.4 18.5 NO
32 7 30586 85756 0.5 6.5 224.9 32.6 NO
34 7 33342 93352 0.5 6.8 339.8 36.4 NO
36 7 36198 101212 0.5 7.2 549.8 50.2 NO
38 7 39154 109336 0.6 7.5 339.8 50.7 NO
40 7 42210 117724 0.6 7.9 266.5 45.6 NO
42 7 45366 126376 0.7 8.2 1026.9 85.0 NO
44 7 48622 135292 0.7 8.6 558.6 83.3 NO
46 7 51978 144472 0.8 9.0 574.7 75.6 NO

7.6 9.0 4431.9 85.0

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 21 34 0.0 3.0 0.0 1.3 NO
2 - 619 1707 0.0 3.0 0.0 1.4 NO
4 - 1428 4017 0.0 3.1 0.0 1.6 NO
6 - 2467 6985 0.0 3.2 0.0 1.8 NO
8 - 3411 9645 0.0 3.3 0.0 2.0 NO

10 - 4425 12483 0.1 3.5 0.0 2.2 NO
12 - 5994 16945 0.1 3.6 0.0 2.6 NO
14 - 7228 20379 0.1 3.7 0.1 2.9 NO
16 - 8532 23991 0.1 3.9 0.1 3.2 NO
18 - 9906 27781 0.1 4.1 0.1 3.5 NO
20 - 11350 31749 0.2 4.2 0.1 3.8 YES
20 10 15223 42995 0.2 4.8 0.2 4.8 YES
20 9 15303 43255 0.2 4.8 5.1 6.0 NO
22 9 17375 49021 0.3 5.0 58.9 10.9 NO
24 9 20802 58804 0.3 5.4 9.1 9.7 NO
26 9 23178 65410 0.3 5.7 73.4 16.4 NO
28 9 25654 72280 0.4 5.9 139.2 21.1 NO
30 9 28230 79414 0.4 6.3 185.2 22.6 NO
32 9 30906 86812 0.5 6.6 1974.1 115.3 NO
34 9 33682 94474 0.5 6.9 566.0 64.9 NO
36 9 36558 102400 0.5 7.2 955.7 67.8 NO
38 9 39534 110590 0.6 7.6 2931.3 160.6 NO
40 9 42610 119044 0.7 8.0 4771.1 187.6 NO

5.7 8.0 11669.7 187.6

Fig. 6. Results for net (a). Left: u = 4, K = 46 (unreachability proven). Right: u = 5, K = 58
(unreachability not proven)

u = 4 we were able to test the k-paths up to the upper bound K = 46, and to show
that the parameter searched for is c = 8; for u = 5 we can only assume that the value
of c is 10, since we were not able to test all the k-paths of the lengths up to K = 58.
Concerning the net (b), we were able to test the net containing 6 identical processes and
to show that c = 2; the results are given in Fig. 7.

We have compared the efficiency of parametric part of our implementation with the
tool Romeo [31], using the benchmark of Fischer’s mutual exclusion protocol to this
aim. The results are shown in Fig 8.

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 71 124 0.0 3.0 0.0 1.3 NO
2 - 1567 4394 0.0 3.1 0.0 1.6 NO

4 - 3754 10753 0.1 3.3 0.0 2.1 NO
6 - 6661 19240 0.1 3.7 0.0 2.8 NO
8 - 9273 26794 0.2 4.0 0.0 3.4 NO

10 - 12105 34956 0.2 4.4 0.1 4.0 NO
12 - 16672 48307 0.3 4.9 0.2 5.1 NO
14 - 20194 58445 0.4 5.4 0.5 5.9 NO
16 - 23936 69191 0.4 5.8 1.4 6.8 NO
18 - 27898 80545 0.5 6.3 2.9 8.0 NO
20 - 32080 92507 0.6 6.8 10.1 10.2 NO
22 - 39247 113458 0.7 7.7 88.9 19.0 NO
24 - 44119 127396 0.8 8.3 341.1 26.9 NO
26 - 49211 141942 0.8 8.9 489.3 42.4 NO
28 - 54523 157096 0.9 9.6 6.2 14.5 YES
28 2 60704 175021 1.0 10.3 40.6 24.0 YES
28 1 60816 175385 1.1 10.4 3027.4 243.0 NO
30 1 67021 193096 1.1 11.1 393.9 75.2 NO

9.4 11.1 4402.6 243.0

Fig. 7. Results for net (b) containing 6 identical processes; the bound K = 30.

Romeo VerICS
N sec MB sec MB
2 0.1 1 0.65 3
3 0.14 6 2.65 4
4 0.61 9 1.92 5
5 4.99 38 2.93 6
6 44.76 364 6.02 7
7 >360 >2000 8.63 9
8 - - 12.67 12
9 - - 20.74 15

10 - - 30.28 23
12 - - 43.72 32
15 - - 136.78 92
20 - - 551.64 299
25 - - 1304.2 538

Fig. 8. Results for mutex, ∆ = 2, δ = 1 - a comparison with the tool Romeo. N denotes the
number of processes.

8 Final Remarks

We have shown that the BMC method for checking reachability properties of TPNs is
feasible. Our preliminary experimental results prove the efficiency of the method. How-
ever, it would be interesting to check practical applicability of BMC for other examples
of time Petri nets. On the other hand, it would be also interesting to check efficiency of
the above solutions for other (non-distributed) nets (which could be done by applying
the translations from [28]).

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking for real-time systems. In Proc. of
the 5th Symp. on Logic in Computer Science (LICS’90), pages 414–425. IEEE Computer
Society, 1990.

2. R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. An implementation of
three algorithms for timing verification based on automata emptiness. In Proc. of the 13th
IEEE Real-Time Systems Symposium (RTSS’92), pages 157–166. IEEE Computer Society,
1992.

3. G. Audemard, A. Cimatti, A. Kornilowicz, and R. Sebastiani. Bounded model checking for
timed systems. In Proc. of the 22nd Int. Conf. on Formal Techniques for Networked and
Distributed Systems (FORTE’02), volume 2529 of LNCS, pages 243–259. Springer-Verlag,
2002.

4. M. Benedetti and A. Cimatti. Bounded model checking for Past LTL. In Proc. of the 9th Int.
Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03),
volume 2619 of LNCS, pages 18–33. Springer-Verlag, 2003.

5. B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using
time Petri nets. IEEE Trans. on Software Eng., 17(3):259–273, 1991.

6. B. Berthomieu and M. Menasche. An enumerative approach for analyzing time Petri nets. In
Proc. of the 9th IFIP World Computer Congress, volume 9 of Information Processing, pages
41–46. North Holland/ IFIP, September 1983.

7. A. Biere, A. Cimatti, E. Clarke, M.Fujita, and Y. Zhu. Symbolic model checking using SAT
procedures instead of BDDs. In Proc. of the ACM/IEEE Design Automation Conference
(DAC’99), pages 317–320, 1999.

8. H. Boucheneb and K. Barkaoui. Relevant timed schedules / clock valuations for constructing
time Petri net reachability graph. In Proc. of the 6th Int. Workshop on Formal Analysis
and Modeling of Timed Systems (FORMATS’08), volume 5215 of LNCS, pages 265–279.
Springer-Verlag, 2008.

9. H. Boucheneb and G. Berthelot. Towards a simplified building of time Petri nets reachability
graph. In Proc. of the 5th Int. Workshop on Petri Nets and Performance Models, pages 46–55,
October 1993.

10. G. Bucci, A. Fedeli, L. Sassoli, and E. Vicaro. Modeling flexible real time systems with
preemptive time Petri nets. In Proc. of the 15th Euromicro Conference on Real-Time Systems
(ECRTS’03), pages 279–286. IEEE Computer Society, 2003.

11. G. Bucci and E. Vicaro. Compositional validation of time-critical systems using communi-
cating time Petri nets. IEEE Trans. on Software Eng., 21(12):969–992, 1995.

12. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability
solving. Formal Methods in System Design, 19(1):7–34, 2001.

13. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Półrola, M. Szreter, B. Woźna, and
A. Zbrzezny. VerICS: A tool for verifying timed automata and Estelle specifications. In Proc.
of the 9th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03), volume 2619 of LNCS, pages 278–283. Springer-Verlag, 2003.

14. E. A. Emerson and R. Trefler. Parametric quantitative temporal reasoning. In Proc. of
the 14th Symp. on Logic in Computer Science (LICS’99), pages 336–343. IEEE Computer
Society, July 1999.

15. G. Gardey, O. H. Roux, and O. F. Roux. Using zone graph method for computing the state
space of a time Petri net. In Proc. of the 1st Int. Workshop on Formal Analysis and Modeling
of Timed Systems (FORMATS’03), volume 2791 of LNCS, pages 246–259. Springer-Verlag,
2004.

16. K. Heljanko. Bounded reachability checking with process semantics. In Proc. of the 12th
Int. Conf. on Concurrency Theory (CONCUR’01), volume 2154 of LNCS, pages 218–232.
Springer-Verlag, 2001.

17. M. Huhn, P. Niebert, and F. Wallner. Verification based on local states. In Proc. of the 4th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’98),
volume 1384 of LNCS, pages 36–51. Springer-Verlag, 1998.

18. R. Janicki. Nets, sequential components and concurrency relations. Theoretical Computer
Science, 29:87–121, 1984.

19. J. Lilius. Efficient state space search for time Petri nets. In Proc. of MFCS Workshop on
Concurrency, Brno’98, volume 18 of ENTCS. Elsevier, 1999.

20. R. Mascarenhas, D. Karumuri, U. Buy, and R. Kenyon. Modeling and analysis of a virtual
reality system with time Petri nets. In Proc. of the 20th Int. Conf. on Software Engineering
(ICSE’98), pages 33–42. IEEE Computer Society, 1998.

21. P. Merlin and D. J. Farber. Recoverability of communication protocols – implication of a
theoretical study. IEEE Trans. on Communications, 24(9):1036–1043, 1976.

22. Y. Okawa and T. Yoneda. Symbolic CTL model checking of time Petri nets. Electronics and
Communications in Japan, Scripta Technica, 80(4):11–20, 1997.

23. W. Penczek and A. Półrola. Specification and model checking of temporal properties in time
Petri nets and timed automata. In Proc. of the 25th Int. Conf. on Applications and Theory of
Petri Nets (ICATPN’04), volume 3099 of LNCS, pages 37–76. Springer-Verlag, 2004.

24. W. Penczek, A. Półrola, B. Woźna, and A. Zbrzezny. Bounded model checking for reachabil-
ity testing in time Petri nets. In Proc. of the Int. Workshop on Concurrency, Specification and
Programming (CS&P’04), volume 170(1) of Informatik-Berichte, pages 124–135. Humboldt
University, 2004.

25. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal frag-
ment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.

26. W. Penczek, B. Woźna, and A. Zbrzezny. Branching time bounded model checking for ele-
mentary net systems. Technical Report 940, ICS PAS, Ordona 21, 01-237 Warsaw, January
2002.

27. W. Penczek, B. Woźna, and A. Zbrzezny. Towards bounded model checking for the univer-
sal fragment of TCTL. In Proc. of the 7th Int. Symp. on Formal Techniques in Real-Time
and Fault Tolerant Systems (FTRTFT’02), volume 2469 of LNCS, pages 265–288. Springer-
Verlag, 2002.

28. A. Półrola and W. Penczek. Minimization algorithms for time Petri nets. Fundamenta Infor-
maticae, 60(1-4):307–331, 2004.

29. L. Popova. On time Petri nets. Elektronische Informationsverarbeitung und Kybernetik,
27(4):227–244, 1991.

30. L. Popova-Zeugmann and D. Schlatter. Analyzing paths in time Petri nets. Fundamenta
Informaticae, 37(3):311–327, 1999.

31. Romeo: A tool for time Petri net analysis. http://www.irccyn.ec-nantes.fr/irccyn/d/en/
equipes/TempsReel/logs, 2000.

32. O. Strichman. Tuning SAT checkers for bounded model checking. In Proc. of the 12th
Int. Conf. on Computer Aided Verification (CAV’00), volume 1855 of LNCS, pages 480–494.
Springer-Verlag, 2000.

33. L-M. Tranouez, D. Lime, and O. H. Roux. Parametric model checking of time Petri nets
with stopwatches using the state-class graph. In Proc. of the 6th Int. Workshop on Formal
Analysis and Modeling of Timed Systems (FORMATS’08), volume 5215 of LNCS, pages
280–294. Springer-Verlag, 2008.

34. I. B. Virbitskaite and E. A. Pokozy. A partial order method for the verification of time
Petri nets. In Fundamental of Computation Theory, volume 1684 of LNCS, pages 547–558.
Springer-Verlag, 1999.

35. B. Woźna. ACTL∗ properties and bounded model checking. Fundamenta Informaticae,
63(1):65–87, 2004.

36. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for timed au-
tomata via SAT. Fundamenta Informaticae, 55(2):223–241, 2003.

37. S. Yovine. Model checking timed automata. In Embedded Systems, volume 1494 of LNCS,
pages 114–152. Springer-Verlag, 1997.

38. A. Zbrzezny. Improvements in SAT-based reachability analysis for timed automata. Funda-
menta Informaticae, 60(1-4):417–434, 2004.

39. A. Zbrzezny. SAT-based reachability checking for timed automata with diagonal constraints.
Fundamenta Informaticae, 67(1-3):303–322, 2005.

9 Appendix

9.1 Concrete Models - Proofs

Below we provide a proof of Lemma 1:

Proof. We shall show that the relation R = {((m, clock), (m′, clock′)) | m = m′ ∧
∀(i ∈ I s.t. clock(i) ≤ cmax(N)) clock(i) = clock′(i) ∧ ∀(i ∈ I s.t. clock(i) >
cmax(N)) clock′(i) > cmax(N)} is a bisimulation. It is easy to see that σ0Rσ0, and
the valuations of the related states are equal (due to equality of their markings). Consider
σ = (m, clock) ∈ Σ and σ′ = (m, clock′) ∈ Σ such that σRσ′.

– if σ δ→c σ1, where δ ∈ IR+, then for each t ∈ en(m) there exists i ∈ IV(t) s.t.
clock(i) + δ ≤ Lft(t). Consider the following cases:
• if en(m) contains at least one transition t with Lft(t) < ∞, then this implies

that δ ≤ cmax(N). In this case consider δ′ = δ; it is easy to see from the
definition of R that for any t ∈ en(m) s.t Lft(t) < ∞ if in σ for some i ∈ I

we have clock(i) + δ ≤ Lft(t), then in σ′ clock′(i) + δ′ ≤ Lft(t) holds as
well, and therefore the time δ′ can pass at σ′, leading to the state σ′+δ′, which
satisfies (σ + δ)R(σ′ + δ′) in an obvious way.

• if en(m) contains no transition t with Lft(t) < ∞, then we can have either
δ ≤ cm1 or δ > cm1, where by cm1 we mean the value cmax(N) + 1. In
the first case consider δ′ = δ; it is obvious that such a passage of time at σ′

disables no transition and is allowed therefore; it is also easy to see that (σ +
δ)R(σ′ + δ′). In the case δ > cm1 assume δ′ = cm1. Again, it is obvious that
such a passage of time at σ′ disables no transition and due to this is allowed,
and that in both the states σ + δ and σ′ + δ′ we have clock(i) > cmax(N) for
all i ∈ I, and therefore (σ + δ)R(σ′ + δ′).

– the three remaining cases are straightforward.

9.2 Extended Detailed Region Graph - Proofs

Below, we provide a proof of Lemma 2:

Proof. We shall show that the relation R = {(σ,w) | σ ∈ w} is a bisimulation. It
is easy to see that σ0Rw0, and that for each σ ∈ w we have Vc(σ) = V (w), since
the markings of the related states are equal. Thus, consider σ = (m, clock) ∈ Σ and
w = (m,Z) ∈ W such that σRw.

– If w τ→ w′, where w′ = (m′, Z ′) ∈ W , then for each v ∈ Z (and therefore for
that given by v(xi) = clock(i) for all i ∈ I) there exists δ ∈ [0, cm1] such that
v+δ ∈ Z ′. Moreover, the condition Z ′ |= inv(m) implies that for each t ∈ en(m)
there is i ∈ IV(t) such that (v+δ)(xi) ≤ Lft(t). Thus, there exists a state σ′ ∈ Σ,
given by σ′ = (m, clock + δ), satisfying σ

δ→r σ′ and σ′ ∈ w′ (i.e., σ′Rw′).

– On the other hand, if σ δ→r σ′ for some σ′ = (m, clock′) ∈ Σ and δ ∈ [0, cm1],
then for each σ1 = (m, clock1) ∈ w one can find δ′ ∈ [0, cm1] such that the clock
valuation v′1 given by v′1(xi) = clock1(i) + δ′ for all i ∈ I is equivalent to the
clock valuation v′ given by v′(xi) = clock′(i) for all i ∈ I11. Moreover, from the
definition of the time-successor relation we have that for each t ∈ en(m) there
is i ∈ IV(t) such that clock′(i) ≤ Lft(t), and therefore from the definition of
≃N it holds also clock1(i) + δ′ ≤ Lft(t). Thus, for the extended detailed region
w′ = (m,Z ′) such that σ′ ∈ w′ (and therefore w′R−1σ′) we have that for each
v′′ ∈ Z there is δ′′ ∈ [0, cm1] s.t. v′′ + δ′′ ∈ Z ′, and we have Z ′ |= inv(m), which
implies w τ→ w′.

– If w t→ w′ for some transition t ∈ T , where w′ = (m[t⟩, Z ′) ∈ W , then t ∈
en(m) and Z |= firet(m) ∧ inv(m). Thus, it is easy to see that the transition
t can be fired also at the state σ, which leads to σ′ = (m′, clock′) ∈ Σ, with
m′ = m[t⟩ and clock′(i) = 0 for i ∈ IV(t), and clock′(i) = clock(i) otherwise.
Therefore, the clock valuation v′ given by v′(xi) = clock′(i) belongs to the zone
Z[reset(t,m) := 0], which implies σ′ ∈ w′ (and therefore σ′Rw′).

– If σ
t→r σ′ for some transition t ∈ T and σ′ = (m′, clock′) ∈ Σ, then t ∈

en(m), clock(i) ≥ Eft(t) for every i ∈ IV(t), and there exists i ∈ IV(t) such
that clock(i) ≤ Lft(t). Thus, from the definition of ≃N the zone Z satisfies the
constraints firet(m) and inv(m). Considering w′ = (m′, Z ′) such that σ′ ∈ w′,
it is easy to see from the definition of ≃N that Z ′ = Z[reset(m, t) := 0] (the zone
Z collects the clock valuations equivalent to v given by v(xi) = clock(i) for each
i ∈ I; therefore from σ

t→r σ′ and from the definition of ≃N the zone Z ′ collects
the valuations which are like the elements of Z but with the clocks xi with i ∈ IV(t)
set to zero). Moreover, Z ′ |= inv(m′) in an obvious way (we have m′ = m[t⟩; if a
transition t′ ∈ en(m′) became enabled by firing t then there exists i ∈ IV(t′) such
that for all v′ ∈ Z ′ v′(xi) = 0 (and therefore v(xi) ≤ Lft(t′)), whereas for all
the other transitions t ∈ en(m′) the existence of i ∈ I s.t. v(xi) ≤ Lft(t) follows
from Z |= inv(m), since the values of clocks have not been increased). Thus, for
the detailed region w′ such that σ′ ∈ w′ (and therefore w′R−1σ′) we have w t→ w′,
which ends the proof.

11 The above fact can be derived from the properties of “standard” detailed region graphs, for
which we have that for two equivalent states q1, q2, for all δ ∈ IR+ whenever some q′1 is
a time successor of q1 on time passage δ, there exists δ′2 and δ′ ∈ IR+ such that q′2 is the
time successor of q2 on time passage δ′, and q′1 is equivalent to q′2 [37]. The equivalence
relation ≃N differs from that defining “standard” detailed region in non-involving the maximal
constant appearing in the constraints.

9.3 Discretisation - Proofs

Given a distributed time Petri net N of n processes, and the set of clock X associated
with these processes, let C′

X be the set of constraints defined by the grammar

cc := true | xi ∼ c | xi − xi1 ∼ c | cc ∧ cc,

where xi, xi1 ∈ X , ∼∈ {<,≤,=,≥, >}, and c ∈ IN. In order to provide the next proof
we recall the following lemmas of [39]12:

Lemma 6. Let ϕ ∈ C′
X , v ∈ IRn

+, and δ ∈ IR+. If v |= ϕ and v + δ |= ϕ, then for each
0 ≤ δ′ ≤ δ it holds v + δ′ |= ϕ.

Lemma 7. Let u, v ∈ IRn
+ be clock valuations such that u ≃N v. For any clock con-

straint ϕ ∈ C′
X , u |= ϕ ⇐⇒ v |= ϕ.

Lemma 8. Let u, v ∈ IRn
+ be clock valuations such that for any clock constraint ϕ ∈

C′
X , u |= ϕ ⇐⇒ v |= ϕ.Then, u ≃N v.

Lemma 9. For every v ∈ IRn
+ there exists u ∈ Dn such that u ≃N v.

Lemma 10. Let v ∈ IRn
+ be a clock valuation, δ ∈ [0, cmax(N) + 1], and m ∈ IN. For

each u ∈ Dn
m such that v ≃N u there exists δ′ ∈ Em+1 such that v + δ ≃N u + δ′.

Moreover, u+ δ′ ∈ Dn
m+1.

Lemma 11. For a given time Petri net N the models MΓ (N) = (Γ (N), V) and
M̃Γ (N) = (Γ̃ (N), Ṽ) are bisimulation equivalent.

A proof of Lemma 3 is as follows:

Proof. We shall show that the relation R = {(w̃, w) | w̃ ∈ w} is a bisimulation
(where the definition of w̃ ∈ w corresponds to that for concrete states and regions, as
W̃ ⊂ Σ). It is obvious that the initial states of both the models are related, and that
the related states are of the same valuations. Thus, consider w = (m,Z) ∈ W and
w̃ = (m, v) ∈ W̃ such that w̃Rw.

– if w τ→ w′, where w′ = (m,Z ′) ∈ W , then from (m,Z)
τ→ (m,Z ′) we have that

for each u ∈ Z (and therefore also for the clock value v of the state w̃) there exists
δ ∈ [0, cm1] such that u + δ ∈ Z ′. From Lemma 10 we have that there is δ′ ∈ E
such that v + δ′ ≃N v + δ (i.e., v + δ′ ∈ Z ′). Moreover, from Z,Z ′ |= inv(m)

we have that v, v + δ′ |= inv(m), which implies that (m, v)
δ′→d (m, v + δ′), and

(m, v + δ′)Rw′;
– if w̃

δ→d w̃′ for some δ′ ∈ E, where w̃′ = (m, v′) ∈ W̃ , then v′ = v + δ,
and v, v′ |= inv(m). From the fact explained in Footnote 11 we have that for any
(m, v′′) s.t. v′′ ≃N v there is a time successor (m, v′′+δ′′) for some δ′′ ∈ [0, cm1]

s.t. v′′ + δ′′ ≃N v′, which implies that there is w′ ∈ W such that w τ→ w′ and
w̃′ ∈ w;

12 The paper [39] deals with timed automata. However, the proofs do not involve the features of
timed automata, so the proofs are not repeated here

– if w
t→ w′ for some t ∈ T , where w′ = (m[t⟩, Z ′) ∈ W , then t ∈ en(m),

Z |= firet(m) ∧ inv(m), Z ′ = Z[reset(m, t) := 0] and Z ′ |= inv(m[t⟩). Thus,
t can be fired at (m, v), leading to a state (m[t⟩, v′) with v′ = v[reset(m, t) := 0]
and v′ |= inv(m[t⟩), which belongs to w′ in an obvious way;

– if w̃
t→d w̃′ for some t ∈ T , where w̃′ = (m′, v′), then m′ = m]t⟩, v |=

firet(m) ∧ inv(m), v′ = v[reset(m, t) := 0] and v′ |= inv(m′). From Lemma 7
we have that Z |= firet(m) ∧ inv(m), and therefore t can be fired also at w =
(m,Z). The action successor (m′′, Z ′) satisfies m′′ = m[t⟩, Z ′ = Z[reset(m, t) :=
0] and Z ′ |= inv(m′′). Thus, v ∈ Z ′.

9.4 Testing Reachability - Technical Details

Consider a distributed time Petri net N of n processes, and with the set of places P . A
k-path π is a special k-path iff for each even i (0 ≤ i < k) the transition π(i) → π(i+1)
is a time transition, and for each odd i (0 < i < k) the transition π(i) → π(i+ 1) is an
action transition. It is easy to see that a marking is reachable in Mc(N) (respectively in
M̃Γ (N)) iff it is reachable on a special k-path in Mc(N) (respectively in M̃Γ (N)). Let
h(m) = ⌊m+1

2 ⌋. Moreover, let (m, clock), (m′, clock′) be two states and π, π′ be two
k-paths. We shall write (m, clock) ≃N (m′, clock′) iff m = m′ and clock ≃N clock′.
We shall also write π ≃N π′ if for every 0 ≤ m ≤ k it holds π(m) ≃N π′(m).

A normalised special k-path (normalised k-path for short) is a special k-path s.t.
all the clock values of π′(m) (m = 0, 1, . . . , k) belong to Dh(m), and for each even

m < k the label of the transition π′(m)
δ→ π′(m + 1) belongs to Eh(m)+1. We have

the following lemma (analogous to that in [39]):

Lemma 12. For each k ∈ IN, and for each special k-path in M̃Γ (N) there is a nor-
malised special k-path π′ in M̃Γ (N) such that π ≃N π′.

The proof is analogous to the proof of Lemma 3.3 in [39]. So, we get that a marking is
reachable iff it is reachable on some normalised special k-path in M̃Γ (N).

Since the number of time transitions of a normalised k-path is equal to ⌊k+1
2 ⌋, we

get that all the clock values of a normalised k-path are bounded by ⌊k+1
2 ⌋ · cm1. This

fact is useful when computing the length of a bit vectors encoding the states of a k-path.
More precisely, the m-th state of a normalised k-path can be represented by a bit vector
of the length r(m) = ⌈log2(|P |)⌉+ |I| · (⌈log2(⌊k+1

2 ⌋ ·cm1)⌉)+1+h(m)) (the details
can be found in [39]).

9.5 Testing Unreachability - Technical Details

Again, consider a distributed time Petri net N of n processes, and with the set of places
P . In order to test unreachability we consider free normalised special k-paths. A free
special k-path π is called a free normalised special k-path (free normalised k-path for
short) if all the clock values of π(m), for m = 0, . . . , k, belong to Dh(m), all the clock
values of π(0) are not greater than n · cm1, and for each even m < k the label δ of
π(m)

δ→d π(m + 1) belongs to Eh(m)+1. Let g(n) = ⌈log1(n + 1)⌉. We have the
following lemma:

Lemma 13. For each k ∈ IN, and for each free special k-path in M̃Γ (N) there exists
a free normalised special k-path π′ in M̃Γ (N) such that π ≃N π′.

The proof is analogous to that of Lemma 3.6 in [39]. So, we get that a marking is
reachable on a free path iff it is reachable on some free normalised special path in
M̃Γ (N).

Since the number of time transitions in a free normalised k-path is equal to ⌊k+1
2 ⌋,

we get that all the clock values of a free normalised k-path are bounded by (⌊k+1
2 ⌋+n)·

(cmax(N) + 1). This fact is useful when computing the length of a bit vector encoding
the states of a free normalised k-path. More precisely, the m-th state of a normalised
k-path can be represented by a bit vector of the length r(m) = ⌈log2(|P |)⌉ + |I| ·
(⌈log2(⌊(k+1

2 ⌋+ n) · cm1)⌉) + 1 + g(n) + h(m)) (the details can be found in [39]).

